Facebook iconComplete Guide to Fine-tuning Qwen2.5 VL Model - F22 Labs
Blogs/AI

Complete Guide to Fine-tuning Qwen2.5 VL Model

Written by Saisaran D
Oct 1, 2025
9 Min Read
Complete Guide to Fine-tuning Qwen2.5 VL Model Hero

Fine-tuning pre-trained models is a powerful way to improve their performance for specific tasks. In this blog, we’ll walk you through how to fine-tune the Qwen2.5 VL model, which is designed to work with both images and text. This guide will cover everything you need to know, from setting up your environment to training the model and using it for inference.

We’ll break down the process step by step, explaining how to prepare your data, configure the model, and train it efficiently. Whether you’re new to fine-tuning or have experience with it, this guide will help you understand each part of the process and make it easier for you to apply the Qwen2.5 VL model to your own projects. Let’s get started!

Environment Setup

Before we begin, we need a GPU with a minimum 18GB of vram . Then we need to create a Python environment and install all required dependencies. Each package serves a specific purpose. If you’re still weighing frameworks for your stack, this comparison of PyTorch vs TensorFlow will help you choose confidently.

python -m venv venv
source venv/bin/activate

pip install -q git+https://github.com/huggingface/transformers accelerate peft bitsandbytes qwen-vl-utils[decord]==0.0.8 lightning nltk

Data Preparation

The data structure is crucial for proper training. We need to organize our data in a way that makes it easy to load and process both images and their corresponding text annotations.

The data directory should be in the following format: 

Data/
├── train/
│   ├── annotations.jsonl
│   ├── image_1.jpg
│   ├── image_2.jpg
│   ├── ...
│   ├── image_n.jpg
├── val/
│   ├── annotations.jsonl
│   ├── image1.jpg
│   ├── image2.jpg
│   ├── ...
│   ├── image_n.jpg

Example annotation format

Image

Annotation

{
  "image": "image_1.jpg",
  "prefix": "extract data in JSON format",
  "suffix": {
    "route": "O385-YZ-713",
    "pallet_number": "17",
    "delivery_date": "6/8/2024",
    "load": "3",
    "dock": "D29",
    "shipment_id": "W26118105447",
    "destination": "33081 Campbell Fork Apt. 406, West Georgeview, OK 60970",
    "asn_number": "4164755503",
    "salesman": "KATIE FRANCO",
    "products": [
      {
        "description": "675849 - 6PK OF SHAMPOO",
        "cases": "8",
        "sales_units": "64",
        "layers": "2"
      },
      {
        "description": "707106 - 24PK OF TOILET CLEANER",
        "cases": "32",
        "sales_units": "64",
        "layers": "1"
      },
      {
        "description": "246810 - ROLL OF MASKING TAPE",
        "cases": "4",
        "sales_units": "2",
        "layers": "5"
      },
      {
        "description": "753486 - 24PK OF DISPOSABLE FACE MASKS",
        "cases": "16",
        "sales_units": "32",
        "layers": "1"
      }
    ],
    "total_cases": "60",
    "total_units": "162",
    "total_layers": "9",
    "printed_date": "11/29/2024 17:03",
    "page_number": "71"
  }
}

Here prefix will be system prompt and the suffix will be the assistant response.

Dataset formatting

The format_data function structures our data in the chat format that Qwen2.5 VL expects, creating a three-turn conversation format with a system message (sets context), a user message (contains image and input text), and an assistant message (contains the target response).

The JSONLDataset class handles data loading and processing by reading JSONL annotations, loading corresponding images, and formatting data into the required conversation structure.

import os
import json
import random
from PIL import Image
from torch.utils.data import Dataset

def format_data(image_directory_path, entry):
    return [
        {
            "role": "system",
            "content": [{"type": "text", "text": SYSTEM_MESSAGE}],
        },
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image_directory_path + "/" + entry["image"],
                },
                {
                    "type": "text",
                    "text": entry["prefix"],
                },
            ],
        },
        { 
            "role": "assistant",
            "content": [{"type": "text", "text": entry["suffix"]}],
        },
    ]

class JSONLDataset(Dataset):
    def __init__(self, jsonl_file_path: str, image_directory_path: str):
        self.jsonl_file_path = jsonl_file_path
        self.image_directory_path = image_directory_path
        self.entries = self._load_entries()
    def _load_entries(self):
        entries = []
        with open(self.jsonl_file_path, 'r') as file:
            for line in file:
                data = json.loads(line)
                entries.append(data)
        return entries
    def __len__(self):
        return len(self.entries)
    def __getitem__(self, idx: int):
        if idx < 0 or idx >= len(self.entries):
            raise IndexError("Index out of range")
        entry = self.entries[idx]
        image_path = os.path.join(self.image_directory_path, entry['image'])
        image = Image.open(image_path)
        return image, entry, format_data(self.image_directory_path, entry)

Loading the dataset

train_dataset = JSONLDataset(
    jsonl_file_path=f"{dataset.location}/train/annotations.jsonl",
    image_directory_path=f"{dataset.location}/train",
)
valid_dataset = JSONLDataset(
    jsonl_file_path=f"{dataset.location}/valid/annotations.jsonl",
    image_directory_path=f"{dataset.location}/valid",
)

Model loading and Lora configuration

Next, we load the model and configure it for training.

Innovations in AI
Exploring the future of artificial intelligence
Murtuza Kutub
Murtuza Kutub
Co-Founder, F22 Labs

Walk away with actionable insights on AI adoption.

Limited seats available!

Calendar
Saturday, 18 Oct 2025
10PM IST (60 mins)

Why LoRA?

LoRA (Low-Rank Adaptation) reduces memory usage and training time by training only a small set of adapter parameters instead of the full model.

Why QLoRA?

QLoRA (Quantized LoRA) further reduces memory usage by quantizing the base model to 4 bits, while preserving performance. In VRAM-constrained workflows, teams also weigh Small language models when task scope allows, keeping latency low without oversizing the stack.

import torch
from peft import get_peft_model, LoraConfig
from transformers import BitsAndBytesConfig
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor

MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

USE_QLORA = True
lora_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.05,
    r=8,
    bias="none",
    target_modules=["q_proj", "v_proj"],
    task_type="CAUSAL_LM",
)
if USE_QLORA:
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_type=torch.bfloat16
    )
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    device_map="auto",
    quantization_config=bnb_config if USE_QLORA else None,
    torch_dtype=torch.bfloat16)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()

MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1280 * 28 * 28
processor = Qwen2_5_VLProcessor.from_pretrained(MODEL_ID, min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)

Train collate function

Collate functions are essential because they handle the batching of diverse data types, ensure proper padding and formatting, prepare inputs in the required model format, and manage special tokens and labels for training.

The train_collate_fn function prepares data for training by applying chat templates to text, processing images into the correct format, creating attention masks, managing special tokens like padding and image tokens, and preparing labels for loss calculation.

from qwen_vl_utils import process_vision_info

def train_collate_fn(batch):
    _, _, examples = zip(*batch)
    texts = [
        processor.apply_chat_template(example, tokenize=False)
        for example
        in examples
    ]
    image_inputs = [
        process_vision_info(example)[0]
        for example
        in examples
    ]
    model_inputs = processor(
        text=texts,
        images=image_inputs,
        return_tensors="pt",
        padding=True
    )
    labels = model_inputs["input_ids"].clone()
    # mask padding tokens in labels
    labels[labels == processor.tokenizer.pad_token_id] = -100
    if isinstance(processor, Qwen2_5_VLProcessor):
        image_tokens = [151652, 151653, 151655]
    else:
        image_tokens = [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
    # mask image token IDs in the labels
    for image_token_id in image_tokens:
        labels[labels == image_token_id] = -100
    input_ids = model_inputs["input_ids"]
    attention_mask = model_inputs["attention_mask"]
    pixel_values = model_inputs["pixel_values"]
    image_grid_thw = model_inputs["image_grid_thw"]
    return input_ids, attention_mask, pixel_values, image_grid_thw, labels

Evaluate collate function

The evaluation collate function is unique because it doesn't require labels, preserves target suffixes for comparison, and removes assistant responses, prompting the model to generate them.

def evaluation_collate_fn(batch):
    _, data, examples = zip(*batch)
    suffixes = [d["suffix"] for d in data]
    # drop the assistant portion so the model must generate it
    examples = [e[:2] for e in examples]
    texts = [
        processor.apply_chat_template(example, tokenize=False)
        for example
        in examples
    ]
    image_inputs = [
        process_vision_info(example)[0]
        for example
        in examples
    ]
    model_inputs = processor(
        text=texts,
        images=image_inputs,
        return_tensors="pt",
        padding=True
    )
    input_ids = model_inputs["input_ids"]
    attention_mask = model_inputs["attention_mask"]
    pixel_values = model_inputs["pixel_values"]
    image_grid_thw = model_inputs["image_grid_thw"]
    return input_ids, attention_mask, pixel_values, image_grid_thw, suffixes

Load the train and validate datasets

from torch.utils.data import DataLoader
BATCH_SIZE = 1
NUM_WORKERS = 0
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, collate_fn=train_collate_fn, num_workers=NUM_WORKERS, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, collate_fn=evaluation_collate_fn, num_workers=NUM_WORKERS)

Training setup with Lightning

Lightning offers an organized training code structure, automatic GPU optimization, easy logging and checkpointing, and simple validation implementation.

import lightning as L
from nltk import edit_distance
from torch.optim import AdamW
class Qwen2_5_Trainer(L.LightningModule):
    def __init__(self, config, processor, model):
        super().__init__()
        self.config = config
        self.processor = processor
        self.model = model
    def training_step(self, batch, batch_idx):
        input_ids, attention_mask, pixel_values, image_grid_thw, labels = batch
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            pixel_values=pixel_values,
            image_grid_thw=image_grid_thw,
            labels=labels
        )
        loss = outputs.loss
        self.log("train_loss", loss, prog_bar=True, logger=True)
        return loss
    def validation_step(self, batch, batch_idx, dataset_idx=0):
        input_ids, attention_mask, pixel_values, image_grid_thw, suffixes = batch
        generated_ids = self.model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            pixel_values=pixel_values,
            image_grid_thw=image_grid_thw,
            max_new_tokens=1024
        )
        generated_ids_trimmed = [
            out_ids[len(in_ids) :]
            for in_ids, out_ids
            in zip(input_ids, generated_ids)]
        generated_suffixes = processor.batch_decode(
            generated_ids_trimmed,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )
        scores = []
        for generated_suffix, suffix in zip(generated_suffixes, suffixes):
            score = edit_distance(generated_suffix, suffix)
            score = score / max(len(generated_suffix), len(suffix))
            scores.append(score)
            print("generated_suffix", generated_suffix)
            print("suffix", suffix)
            print("score", score)
        score = sum(scores) / len(scores)
        self.log("val_edit_distance", score, prog_bar=True, logger=True, batch_size=self.config.get("batch_size"))
        return scores
    def configure_optimizers(self):
        optimizer = AdamW(self.model.parameters(), lr=self.config.get("lr"))
        return optimizer
    def train_dataloader(self):
        return DataLoader(
            train_dataset,
            batch_size=self.config.get("batch_size"),
            collate_fn=train_collate_fn,
            shuffle=True,
            num_workers=10,
        )
    def val_dataloader(self):
        return DataLoader(
            valid_dataset,
            batch_size=self.config.get("batch_size"),
            collate_fn=evaluation_collate_fn,
            num_workers=10,
        )

Training configs

Each parameter serves a specific purpose: max_epochs defines total training iterations, batch_size is kept small due to model size, lr is optimized for LoRA, gradient_clip_val prevents exploding gradients, and accumulate_grad_batches simulates larger batch sizes.

config = {
    "max_epochs": 10,
    "batch_size": 1,
    "lr": 2e-4,
    "check_val_every_n_epoch": 2,
    "gradient_clip_val": 1.0,
    "accumulate_grad_batches": 8,
    "num_nodes": 1,
    "warmup_steps": 50,
    "result_path": "qwen2.5-3b-instruct-ft"
}

Checkpoint saving function

Saving checkpoints ensure training can resume if interrupted, preserves the best models, prevents progress loss, and facilitates deployment

from lightning.pytorch.callbacks import Callback
from lightning.pytorch.callbacks.early_stopping import EarlyStopping

early_stopping_callback = EarlyStopping(monitor="val_edit_distance", patience=3, verbose=False, mode="min")

class SaveCheckpoint(Callback):
    def __init__(self, result_path):
        self.result_path = result_path
        self.epoch = 0
    def on_train_epoch_end(self, trainer, pl_module):
        checkpoint_path = f"{self.result_path}/{self.epoch}"
        os.makedirs(checkpoint_path, exist_ok=True)
        pl_module.processor.save_pretrained(checkpoint_path)
        pl_module.model.save_pretrained(checkpoint_path)
        print(f"Saved checkpoint to {checkpoint_path}")
        self.epoch += 1
    def on_train_end(self, trainer, pl_module):
        checkpoint_path = f"{self.result_path}/latest"
        os.makedirs(checkpoint_path, exist_ok=True)
        pl_module.processor.save_pretrained(checkpoint_path)
        pl_module.model.save_pretrained(checkpoint_path)
        print(f"Saved checkpoint to {checkpoint_path}")

Training Execution

The training process combines all previous components and leverages GPU acceleration, applies gradient accumulation, performs validation checks, saves checkpoints, and monitors progress.

trainer = L.Trainer(
    accelerator="gpu",
    devices=[0],
    max_epochs=config.get("max_epochs"),
    accumulate_grad_batches=config.get("accumulate_grad_batches"),
    check_val_every_n_epoch=config.get("check_val_every_n_epoch"),
    gradient_clip_val=config.get("gradient_clip_val"),
    limit_val_batches=1,
    num_sanity_val_steps=0,
    log_every_n_steps=10,
    callbacks=[SaveCheckpoint(result_path=config["result_path"]), early_stopping_callback],
)
trainer.fit(model_module)

Inferencing the fine-tuned Qwen2.5 VL model:

This inference pipeline provides a streamlined approach to utilizing the fine-tuned model. If you plan to expose this with a web UI, here’s a quick comparison of modern front-end frameworks: Angular vs React vs Vue. In real-world scenarios where models are applied to invoices, shipping docs, or scanned text, an ocr models comparison can provide useful context on baseline performance and trade-offs between approaches.

model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-VL-3B-Instruct ",
    device_map="auto",
    torch_dtype=torch.bfloat16
)
processor = Qwen2_5_VLProcessor.from_pretrained(
    "Qwen/Qwen2.5-VL-3B-Instruct ",
    min_pixels=MIN_PIXELS,
    max_pixels=MAX_PIXELS
)
ft_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    "/path/to/your/model/qwen2.5-3b-instruct-ft/latest",
    device_map="auto",
    torch_dtype=torch.bfloat16
)
ft_processor = Qwen2_5_VLProcessor.from_pretrained(
    "/path/to/your/model/qwen2.5-3b-instruct-ft/latest",
    min_pixels=MIN_PIXELS,
    max_pixels=MAX_PIXELS
)

def run_inference(model, processor, conversation, max_new_tokens=1024, device="cuda"):
    text = processor.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    image_inputs, _ = process_vision_info(conversation)
    inputs = processor(
        text=[text],
        images=image_inputs,
        return_tensors="pt",
    )
    inputs = inputs.to(device)
    generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens)
    generated_ids_trimmed = [
        out_ids[len(in_ids):]
        for in_ids, out_ids
        in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )
    return output_text[0]

image_path = path/to/your/image

conversation=[
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image_path, "resized_height": 1080, "resized_width": 480},
                {"type": "text", "text": text_input},
            ],
        }
    ]

output = run_inference(model, processor, conversation)
ft_output= run_inference(ft_model, ft_processor, conversation)
print(output)

Input image 

Output 

Original model output

 "route": {
    "id": "T147-EH-365",
    "delivery_date": "3/31/2024"
  },
  "shipment_id": "E72927453150",
  "address": {
    "city": "Ricetown",
    "state": "SD",
    "zip": "55424"
  },
  "asn_number": "2705905007",
  "dock": "D21",
  "salesman": "BRIDGET WEBER",
  "products": [
    {
      "product_id": "384756",
      "name": "CASE OF BUCKET LIDS",
      "cases": 4,
      "units": 32,
      "layers": 4
    },
    {
      "product_id": "836495",
      "name": "CASE OF CLEANING BRUSHES",
      "cases": 32,
      "units": 32,
      "layers": 4
    },
    {
      "product_id": "394758",
      "name": "BOX OF WINDOW CLEANERS",
      "cases": 16,
      "units": 8,
      "layers": 5
    },
    {
      "product_id": "485763",
      "name": "BOX OF WORK GLOVES",
      "cases": 2,
      "units": 2,
      "layers": 2
    },
    {
      "product_id": "987654",
      "name": "CASE OF AIR FRESHENER SPRAYS",
      "cases": 64,
      "units": 8,
      "layers": 4
    }
  ],
  "pallet_total": {
    "cases": 118,
    "units": 82,
    "layers": 19
  },
  "printed_date": "11/29/2024 17:03",
  "page_number": 48
}
```

Fine-tuned model output

{
  "pallet_number": "1",
  "load": "3",
  "route": "T147-EH-365",
  "delivery_date": "3/31/2024",
  "shipment_id": "E72927453150",
  "dock": "D21",
  "destination": "52267 Russell Burgs, Ricetown, SD 55424",
  "asn_number": "2705905007",
  "salesman": "BRIDGET WEBER",
  "products": [
    {
      "description": "384756 - CASE OF BUCKET LIDS",
      "cases": "4",
      "sales_units": "32",
      "layers": "4"
    },
    {
      "description": "836495 - CASE OF CLEANING BRUSHES",
      "cases": "32",
      "sales_units": "32",
      "layers": "4"
    },
    {
      "description": "394758 - BOX OF WINDOW CLEANERS",
      "cases": "16",
      "sales_units": "8",
      "layers": "5"
    },
    {
      "description": "485763 - BOX OF WORK GLOVES",
      "cases": "2",
      "sales_units": "2",
      "layers": "2"
    },
    {
      "description": "987654 - CASE OF AIR FRESHENER SPRAYS",
      "cases": "64",
      "sales_units": "8",
      "layers": "4"
    }
  ],
  "total_cases": "118",
  "total_units": "82",
  "total_layers": "19",
  "printed_date": "11/29/2024 17:03",
  "page_number": "48"
}

Our Final Words

This comprehensive step-by-step guide breaks down the complex process of fine-tuning Qwen2.5 VL model into manageable, sequential phases. Starting from environment setup through to inference, each step is carefully documented with both explanatory text and complete code implementations. The structured approach allows practitioners to understand not just what each component does, but also how it fits into the larger pipeline. 

Innovations in AI
Exploring the future of artificial intelligence
Murtuza Kutub
Murtuza Kutub
Co-Founder, F22 Labs

Walk away with actionable insights on AI adoption.

Limited seats available!

Calendar
Saturday, 18 Oct 2025
10PM IST (60 mins)

 By following these eight clearly defined steps—environment setup, data preparation, model configuration, data processing, training architecture, checkpoint management, training execution, and inference—developers can systematically implement their fine-tuning process while avoiding common pitfalls. The inclusion of practical best practices and detailed explanations for each implementation choice makes this guide accessible for teams looking to adopt the Qwen2.5 VL model for their specific needs, regardless of their prior experience with model fine-tuning.

Need Expert Help?

Struggling to fine-tune or deploy Qwen2.5-VL? Our team can help. We work with companies that hire AI developers to set up data pipelines, configure LoRA adapters, and manage training and inference so you get a production-ready model faster, with fewer errors and clearer results.

Author-Saisaran D
Saisaran D

I'm an AI/ML engineer specializing in generative AI and machine learning, developing innovative solutions with diffusion models and creating cutting-edge AI tools that drive technological advancement.

Share this article

Phone

Next for you

Codeium vs Copilot: A Comparative Guide in 2025 Cover

AI

Sep 30, 20259 min read

Codeium vs Copilot: A Comparative Guide in 2025

Are you still debating which AI coding assistant deserves a spot in your developer toolbox this year? Both Codeium and GitHub Copilot promise to supercharge productivity, but they approach coding differently.  GitHub made it known that developers using Copilot complete tasks up to 55% faster compared to coding alone. That’s impressive, but speed isn’t the only factor. Your choice depends on whether you are a solo developer building an MVP or part of a large enterprise team managing massive repo

Zed vs Cursor AI: The Ultimate 2025 Comparison Guide Cover

AI

Oct 14, 20257 min read

Zed vs Cursor AI: The Ultimate 2025 Comparison Guide

Coding has changed. A few years ago, AI lived in plugins and extensions. Today, editors like Zed and Cursor AI are built with AI at the core, reshaping how developers write, debug, and collaborate. But the real question in 2025 isn’t whether to use AI, it’s which editor makes the most sense for your workflow. According to Stack Overflow’s 2023 Developer Survey, 70% of developers are already using or planning to use AI tools in their workflow. With adoption accelerating, the choice of editor is

AWS CodeWhisperer vs Copilot: A Comparative Guide in 2025 Cover

AI

Sep 30, 20259 min read

AWS CodeWhisperer vs Copilot: A Comparative Guide in 2025

Tight deadlines. Security requirements. The pressure to deliver more with fewer resources. These are challenges every developer faces in 2025. Hence, the reason AI coding assistants are in such high demand.  Now, the question is, should your team rely on AWS CodeWhisperer or GitHub Copilot? This is more than a curiosity question. AI assistants are no longer simple autocomplete tools; they now understand project context, generate complete functions, and even flag security risks before code is de