Facebook iconWhat Is Quantization and Its Practical Guide - F22 Labs
Blogs/AI

What Is Quantization and Its Practical Guide

Jul 2, 20253 Min Read
Written by Krishna Purwar
What Is Quantization and Its Practical Guide Hero

Have you ever tried to run a powerful AI model but got an error saying your computer doesn't have enough memory? You're not alone. Today's AI models are massive, often requiring expensive GPUs with huge amounts of memory.

Quantization is a clever technique that reduces model size by changing how numbers are stored, using simpler, less precise formats that need far less memory. Think of it like compressing a photo: you trade a small amount of quality for a much smaller file size.

In this guide, we'll explore how quantization works under the hood and show you practical code examples using BitsAndBytes. You'll learn to implement both 4-bit and 8-bit quantization with just a few lines of code, making large language models more accessible on consumer hardware. Ready to optimize your AI models? Let's dive in!

Why Do We Need Quantization?

Our consumer hardware will never be enough to run new state-of-the-art models coming every now and then with billions of parameters, but that should not let us stop from trying them!!

This is where Quantization does its magic by letting us use a 32B parameter mode, i.e. a 70 GB model within 24 GB of GPU. We will say later on how to do it ourselves.

Quantization enables us to use large models on our GPU, which would not be possible otherwise at the cost of a loss of some precision.

How Does Quantization Work?

Under the hood, Quantization converts higher precision floating points, such as fp32, to numbers like bf16, int8, int4, etc. It leads to the loss of some precision by losing the decimal points. Let’s break down the math in a simple way (no need to worry,  it’s easy, I promise).

Partner with Us for Success

Experience seamless collaboration and exceptional results.

Usually, in our AI world, FP are stored in IEEE 754 Standard and are divided into 3 parts: Sign bit, Exponent Bit and Mantissa(fraction). Floating points are a way to store numbers in base two.

Their format is: [sign bit][exponent bits][mantissa bits]

Now, to keep it extremely simple, FP32 has 1 sign bit, 8 exp bits, and 23 mantissa better known as the fraction. BF16 has the size, 1 sign bit, 8 exp bits, and 7 fraction bits. Now, by losing these fractional values, we do lose a little bit of precision, but by converting FP32 to BF16, we can load the same model in half the size. This was an oversimplified example of how things work, actually, but this is one of the core parts of Quantization.

IEEE 754 Converter Quantization

Practical Ways To Do Quantization

BitsAndBytes Configuration

BitsAndBytes provides the most straightforward approach to model Quantization, supporting both 8-bit and 4-bit Quantization with minimal code changes.

Prerequisite: pip install bitsandbytes, accelerate

from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch

4-bit Quantization Setup

# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)
# Load quantized model
model = AutoModelForCausalLM.from_pretrained(
    "your-model-name",
    quantization_config=bnb_config,
    device_map="auto"
)

8-bit Quantization Configuration

# 8-bit quantization config
bnb_config = BitsAndBytesConfig(
    load_in_8bit=True,
    bnb_8bit_compute_dtype=torch.float16
)

Comparison of Quantization Methods

MethodPrecisionSpeedAccuracyUse Case

FP16

Half

2x faster

High

General inference

INT8

8-bit

4x faster

Good

Production deployment

INT4

4-bit

8x faster

Moderate

Resource-constrained devices

NF4

4-bit

8x faster

Better than INT4

Advanced applications

FP16

Precision

Half

Speed

2x faster

Accuracy

High

Use Case

General inference

1 of 4

These were the simple, easy to use ways that we can use in our daily code whenever we need quantization. There are many other advanced techniques like GGUF, GPTQ, AWQ and more but they are performed either during training or after training, giving us a quantized model, on the other hand, bnb comes in handy when we need it last minute and saves us the pain of dealing with complicated computation and hours of training!

Partner with Us for Success

Experience seamless collaboration and exceptional results.

Happy Quantizing!! 😀

Author-Krishna Purwar
Krishna Purwar

You can find me exploring niche topics, learning quirky things and enjoying 0 n 1s until qbits are not here-

Phone

Next for you

How to Use Hugging Face with OpenAI-Compatible APIs? Cover

AI

Jul 29, 20254 min read

How to Use Hugging Face with OpenAI-Compatible APIs?

As large language models become more widely adopted, developers are looking for flexible ways to integrate them without being tied to a single provider. Hugging Face’s newly introduced OpenAI-compatible API offers a practical solution, allowing you to run models like LLaMA, Mixtral, or DeepSeek using the same syntax as OpenAI’s Python client. According to Hugging Face, hundreds of models are now accessible using the OpenAI-compatible client across providers like Together AI, Replicate, and more.

Transformers vs vLLM vs SGLang: Comparison Guide Cover

AI

Jul 29, 20257 min read

Transformers vs vLLM vs SGLang: Comparison Guide

These are three of the most popular tools for running AI language models today. Each one offers different strengths when it comes to setup, speed, memory use, and flexibility. In this guide, we’ll break down what each tool does, how to get started with them, and when you might want to use one over the other. Even if you're new to AI, you'll walk away with a clear understanding of which option makes the most sense for your needs, whether you're building an app, speeding up model inference, or cr

What is vLLM? Everything You Should Know Cover

AI

Jul 29, 20258 min read

What is vLLM? Everything You Should Know

If you’ve ever used AI tools like ChatGPT and wondered how they’re able to generate so many prompt responses so quickly, vLLM is a big part of the explanation. It’s a high-performance engine to make large language models (LLMs) run faster and more efficiently.  This blog effectively summarizes what vLLM is, why it matters, how it works and how developers can use it. Whether you’re a developer looking to accelerate your AI models or simply curious about the inner workings of AI, this guide will