Facebook iconTransformers vs vLLM vs SGLang: Comparison Guide
Blogs/AI

Transformers vs vLLM vs SGLang: Comparison Guide

Written by Dharshan
Oct 23, 2025
7 Min Read
Transformers vs vLLM vs SGLang: Comparison Guide Hero

These are three of the most popular tools for running AI language models today. Each one offers different strengths when it comes to setup, speed, memory use, and flexibility.

In this guide, we’ll break down what each tool does, how to get started with them, and when you might want to use one over the other. Even if you're new to AI, you'll walk away with a clear understanding of which option makes the most sense for your needs, whether you're building an app, speeding up model inference, or creating smarter workflows.

Let’s dive in.

What are Transformers?

Transformers is an open-source library developed by Hugging Face that makes it easy to use powerful AI models for tasks like text generation, translation, question answering, and even working with images and audio. It provides access to thousands of pre-trained models that you can use with just a few lines of code. 

Whether you're a beginner or an experienced developer, Transformers helps you build and test AI applications quickly without needing deep knowledge of how the models work under the hood.

How to Set Up and Use Transformers?

Step 1: To get started with Transformers, you just need Python and a few commands. First, install the library using pip:

pip install transformers accelerate

Step 2: Once installed, you can load and run a TinyLlama model like this:

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")

messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "what is llm?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt)
print(outputs[0]["generated_text"].replace(prompt, "").strip())

This runs the TinyLlama model locally and prints the generated response. It works on most modern machines, especially if you have a GPU.

Serving with Transformers

Besides running models locally in scripts, Transformers also lets you serve models as an API using the built-in transformers CLI. This is useful if you want to send prompts to the model from a web app or another service.

You can serve a model like TinyLlama using the following command:

transformers serve --model TinyLlama/TinyLlama-1.1B-Chat-v1.0

Once the server is running, it exposes a local API (by default at http://localhost:8000) that follows the OpenAI chat API format. This means you can send chat-style messages to it using simple HTTP requests. Here’s how to do it in Python:

import requests

# API endpoint
url = "http://localhost:8000/v1/chat/completions"

# Input message in OpenAI format
payload = {
    "model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    "messages": [
        {"role": "user", "content": "What is the capital of France?"}
    ]
}

# Send request
response = requests.post(url, json=payload)

# Print the response
print(response.json()["choices"][0]["message"]["content"])
Suggested Reads- What is Hugging Face and How to Use It?

What is vLLM?

vLLM is a high-performance engine for serving large language models quickly and efficiently. It’s designed to reduce memory usage and improve speed, making it ideal for real-time chat and multi-user applications. vLLM supports popular models like LLaMA, Mistral, and TinyLlama, and even works with vision-language models. It’s a great choice when you need fast and scalable model serving.

How to Set Up and Use vLLM?

Step 1: To get started with vLLM, first install it using pip:

pip install vllm

Step 2: Once installed, you can load and run a TinyLlama mode on vllm like this:

from vllm import LLM, SamplingParams

# Load model
llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")

# Input prompt (chat-style)
user_input = "What is LLM?"
prompt = f"<|user|>\n{user_input}<|end|>\n<|assistant|>\n"

# Generate
outputs = llm.generate(prompt)
reply = outputs[0].outputs[0].text.strip()

# Print output
print(reply)

This code uses vLLM directly in Python to run the TinyLlama model efficiently without needing to start a separate API server.

Transformers, vLLM & More: The 2025 AI Shift
Exploring the future of artificial intelligence
Murtuza Kutub
Murtuza Kutub
Co-Founder, F22 Labs

Walk away with actionable insights on AI adoption.

Limited seats available!

Calendar
Saturday, 1 Nov 2025
10PM IST (60 mins)

Serving with vLLM

vLLM is not only useful for running models in scripts it also lets you serve them as a high-performance API with support for OpenAI’s chat format. This is helpful when building apps that need to send prompts to the model over HTTP.

You can serve a model like TinyLlama using this command:

vllm serve TinyLlama/TinyLlama-1.1B-Chat-v1.0 --dtype auto --api-key token-abc123

The server will be available at http://localhost:8000/v1 by default.


Use the OpenAI SDK with vLLM

vLLM supports the OpenAI API format, so you can use the official OpenAI Python client like this:

from openai import OpenAI
client = OpenAI(
    base_url="http://localhost:8000/v1",  # Make sure it's http, not https
    api_key="token-abc123",               # Same key as used in vllm serve
)
completion = client.chat.completions.create(
    model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    messages=[{"role": "user", "content": "Hello!"}]
)
print(completion.choices[0].message)

What is SGLang?

SGLang is a tool that helps you build smart chat systems using AI models. It lets you write simple Python code to control how the model responds, making it easier to create custom assistants or workflows. SGLang runs on top of vLLM, so it’s fast and efficient. It’s a great choice when you want more control over how your AI behaves.

How to Set Up and Use SGLang?

Step 1: To get started with SGLang, install it along with vLLM using pip:

pip install "sglang[all]>=0.4.9.post3"

Step 2: Once installed, you can load and run a TinyLlama mode on SGLang like this:

from sglang.test.test_utils import is_in_ci
from sglang.utils import wait_for_server, print_highlight, terminate_process

if is_in_ci():
    from patch import launch_server_cmd
else:
    from sglang.utils import launch_server_cmd

# This is equivalent to running the following command in your terminal

# python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0

server_process, port = launch_server_cmd(
    """
python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct \
 --host 0.0.0.0
"""
)
wait_for_server(f"http://localhost:{port}")

This code runs the TinyLlama model using SGLang, allowing you to define chat behavior with simple Python code with no extra setup required.

Serving with SGLang

SGLang lets you serve language models with extra flexibility, allowing you to define how the model responds through simple Python functions. It also supports OpenAI-style API calls, making integration with apps and tools straightforward.

To serve a model like TinyLlama, run:

python3 -m sglang.launch_server --model-path TinyLlama/TinyLlama-1.1B-Chat-v1.0 --host 0.0.0.0 --port 3000

Once running, the server is ready to receive chat requests and can be customized for advanced features like tool use, memory, and function calling.

Use the OpenAI SDK with vLLM

vLLM supports the OpenAI API format, so you can use the official OpenAI Python client like this:

import openai

client = openai.Client(base_url=f"https://9654207c14a2.ngrok-free.app/v1", api_key="None")

response = client.chat.completions.create(
    model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    messages=[
        {"role": "user", "content": "What is LLM?."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response.choices[0].message.content)

Performance Comparison Between Transformers vs vLLM vs SGLang

To truly understand how Transformers, vLLM, and SGLang perform, we ran a simple test using the same prompt: “What is LLM?”

Transformers, vLLM & More: The 2025 AI Shift
Exploring the future of artificial intelligence
Murtuza Kutub
Murtuza Kutub
Co-Founder, F22 Labs

Walk away with actionable insights on AI adoption.

Limited seats available!

Calendar
Saturday, 1 Nov 2025
10PM IST (60 mins)

This test was done using the TinyLlama model on a system with 15 GB of available GPU memory. We measured two things:

  • How much GPU memory (VRAM) each tool used
  • How fast they responded (latency)

Here’s a breakdown of the results:

Here’s a breakdown of the results:

ToolGPU Usage (out of 15 GB)Response TimeNotes

Transformers

2.2 GB

4.4 seconds

Light on memory, but slow

vLLM

13.3 GB

1.55 seconds

Very fast, but heavy on VRAM

SGLang

12.6 GB

1.08 seconds

Fastest and slightly lighter

Transformers

GPU Usage (out of 15 GB)

2.2 GB

Response Time

4.4 seconds

Notes

Light on memory, but slow

1 of 3

Feature Comparison of Transformers vs vLLM vs SGLang

FeaturesTransformersvLLMSGLang

Core Use Case

Simple, low-latency text generation

Fast single-round inference for many users

Rich multi-turn conversations and complex task routing

Efficiency Design

Lightweight, traditional architecture

Memory-optimized via advanced scheduling and KV reuse

Task-optimized execution using compiler-style planning

Memory Strategy

Minimal memory use, less VRAM required

PagedAttention allows dynamic reuse of KV memory

Efficient per-task memory allocation with internal optimization

Scalability

Limited parallelism, not ideal for high loads

Scales well with many concurrent users

Scales well for dialog-heavy systems

Flexibility

Works out of the box with standard APIs

Focused on performance over flexibility

Highly configurable for complex pipeline behaviors

Latency Control

Higher latency under load

Low latency due to dynamic batching

Ultra-low latency for conversational models

Customization Support

Basic hooks or extensions possible

Ready-to-use, minimal tweaking needed

Deep customization with domain-specific logic

Core Use Case

Transformers

Simple, low-latency text generation

vLLM

Fast single-round inference for many users

SGLang

Rich multi-turn conversations and complex task routing

1 of 7

What do these numbers tell us?

  • Transformers is like compact cars; they don't use much fuel (memory), but it takes longer to reach the destination (response).
  • vLLM is like a sports car. It goes fast, but it uses a lot of fuel (GPU).
  • SGLang is like a tuned-up version of that sports car just as fast, and even slightly more efficient in memory use.

In practical terms:

  • If you're just exploring or running on a machine with limited GPU, Transformers might be the safer choice.
  • If you need speed and are okay using more GPU, vLLM is a strong option.
  • If you want both speed and more control/customization, SGLang stands out with the fastest response time in this test.

This hands-on test makes it clear how each tool behaves under the same conditions, helping you choose based on what matters most to you: memory usage, speed, or control. In many production cases, teams also compare these setups with Small language models when they want lightweight performance on limited hardware without sacrificing too much capability.

Conclusion

Each tool, Transformers, vLLM, and SGLang, has its own purpose and strengths depending on what you're trying to achieve. 

Transformers is best suited for beginners or lightweight applications thanks to its minimal GPU usage and ease of use.vLLM delivers much faster responses by utilizing more GPU memory, making it a great fit for high-performance, real-time tasks.SGLang builds on top of vLLM and offers even faster results, along with added flexibility for customizing AI behavior through simple Python functions.

Whether you're experimenting, deploying, or building complex systems, understanding these differences will help you choose the right tool for your needs, based on what matters most: speed, memory efficiency, or control, and if you’re exploring other protocols for model serving, you can also read about STDIO transport in MCP to see how similar systems handle transport and integration.

Need Expert Help?

Unsure which tool, Transformers, vLLM or SGLang, is the right fit for your AI workflows? We partner with organisations that hire AI developers to evaluate model-serving options, design scalable pipelines and deploy high-performance systems. Our team can help you select the right framework, optimise GPU usage and build reliable applications that balance speed, memory efficiency and flexibility.

Author-Dharshan
Dharshan

Passionate AI/ML Engineer with interest in OpenCV, MediaPipe, and LLMs. Exploring computer vision and NLP to build smart, interactive systems.

Share this article

Phone

Next for you

How to Use UV Package Manager for Python Projects Cover

AI

Oct 29, 20254 min read

How to Use UV Package Manager for Python Projects

Managing Python packages and dependencies has always been a challenge for developers. Tools like pip and poetry have served well for years, but as projects grow more complex, these tools can feel slow and cumbersome.  UV is a modern, high-performance Python package manager written in Rust, built as a drop-in replacement for pip and pip-tools. It focuses on speed, reliability, and ease of use rather than adding yet another layer of complexity. According to benchmarks from Astral, UV installs pac

15 Best AI Code Generators of 2025 (Reviewed) Cover

AI

Oct 17, 202521 min read

15 Best AI Code Generators of 2025 (Reviewed)

With most developers now relying on AI in their workflow, the question isn’t if you’ll use a code generator in 2025, but which one can deliver the most reliable, context-aware support. In just a few years, AI coding assistants have evolved from autocomplete tools to full-scale collaborators, capable of scaffolding projects, debugging complex systems, and even generating production-ready applications. Stack Overflow’s 2023 Developer Survey mentioned that nearly 70% of developers already use AI t

12 Replit Alternatives for Development in 2025 Cover

AI

Oct 15, 202512 min read

12 Replit Alternatives for Development in 2025

Is Replit still the best choice for cloud-based development in 2025? For years, Replit has been one of the most popular online IDEs, thanks to its instant setup, collaborative editing, and growing ecosystem of AI tools. For students and indie developers, it has often been the first stop for quick coding experiments. For teams, it has offered a fast way to collaborate without heavy local setups. But the developer ecosystem has changed. As projects scale, many find that Replit struggles with perf